A Note on f-Derivations of BCC-Algebras
نویسندگان
چکیده
In this paper, we considered the properties of f -derivations of BCCalgebras. Also, we characterized Kerd by f -derivations. Mathematics Subject Classification: 06F35, 03G25, 08A30.
منابع مشابه
Fuzzy Derivations BCC-Ideals on BCC-Algebras
In the theory of rings, the properties of derivations are important. In [15], Jun and Xin applied the notion of derivations in ring and near-ring theory to BCI-algebras, and they also introduced a new concept called a regular derivation in BCI-algebras. They investigated some properties of its .In this manuscript, the concept of fuzzy left (right) derivations BCCideals in BCC-algebras is introd...
متن کاملf-DERIVATIONS AND (f; g)-DERIVATIONS OF MV -ALGEBRAS
Recently, the algebraic theory of MV -algebras is intensively studied. In this paper, we extend the concept of derivation of $MV$-algebras and we give someillustrative examples. Moreover, as a generalization of derivations of $MV$ -algebraswe introduce the notion of $f$-derivations and $(f; g)$-derivations of $MV$-algebras.Also, we investigate some properties of them.
متن کاملOn Derivations of BCC-algebras
In this paper, the notions of left-right (resp. right-left) t-derivations of BCC-algebras are studied and some properties on t-derivations of BCC-algebras are investigated. This paper also considers t-regular t -derivations and the dt-invariant on ideals of BCC-algebras. Mathematics Subject Classification: 06F35
متن کاملDerivations of UP-algebras by means of UP-endomorphisms
The notion of $f$-derivations of UP-algebras is introduced, some useful examples are discussed, and related properties are investigated. Moreover, we show that the fixed set and the kernel of $f$-derivations are UP-subalgebras of UP-algebras,and also give examples to show that the two sets are not UP-ideals of UP-algebras in general.
متن کاملLie $^*$-double derivations on Lie $C^*$-algebras
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012